
CHANGE OF VARIABLES IN THE LAPLACE TRANSFORM AND 

SOME APPLICATIONS 
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The effect of a change of variable by an arbitrary nonlinear function in the Laplace 
transform'and the inverse transform is considered. Some applications of the results 
to heat-conduction problems are discussed. 

The properties of the Laplace transform under a linear transformation of the argument 
in the original function or transform are generally well known. In the present paper, the 
properties of the Laplace transform under a nonlinear transformation of the argument are 
discussed, continuing a study begun in [i]. As is well known, finding the inverse transform 
is the most difficult step in the operational method. The properties discussed here should 
widen significantly the class of functions whose inverse transforms can be found. 

Change of Variables in the Transform Function 

It was shown in [i] that the replacement of the transform variable p by an arbitrary 
function K(p) in the Laplace transform UI(p) leads to the following result for the inverse 
transform: 

u (t) = L-~U~ [K (P)I = i u~ ('0 k (t, z) d~; 
0 

k (t, "r) = L -~ exp [ - -  K (p)'r]. 

(1) 

(la) 

In (i) and (la) the analytic function K(p) appearing in the transform UI must satisfy the 
condition of "transformability," i.e., we must have Re[K(p)] > oi for Re(p) > oi where o: 
is the exponent of growth of ux(t). A simple form which satisfies this condition is K(p) § 
Bop ~ as p § ~, where --i~ ~ ~i and Bo > 0. Using (i) and the properties of the Laplace 
transform we can obtain some useful results. 

i. Replacement of the Variable by a Sum of Functions. If K(p) = K~(p) + K2(p) and both 
functions satisfy the condition of transformability then [i] 

' ( 2 )  
k (t, 17) : ~ k 1 (~, T) /g2 (t - -  ~, "17) a~; 

6 

ki (t, z) ---- L -1 exp[-- Kf (p) x]. (2a)  

In the special case where K1(p) = dlp + do (a linear function) and K2(p) is nonlinear, weget 

k (t, z)-----H (t - -  dl"~ ) exp ( - -  doT) k~ (f - -  dl% "~), dl > O; 

4z (t) = L-~U~ [d~p + do+K~(p)] = 

t/d~ 1 t [, 
= t' exp(--d~ = ! exp 

b dl ~ 

where H(t) is the Heaviside unit step function. 
several functions. 

(3) 

(3a) 

k~ t - - %  u~ d~ , 

Equation (2) can be easily generalized to 
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2. Replacement of the Variable by a Compound Function. Let K(p) = KI[KI(p)] be a com- 
pound function where the arbitrary analytic functions Ki(p) are transformable. Then (la) 
takes the form 

k(t, "0 = i k~(~/, "O,h(t, ~/) d~/, (~) 
0 

where ki(t , T) is given by (la). 
the chain identity 

Indeed, applying (i) successively from right to left to 

V(p) = v~ [K~ [K~ (p)]l = u~ [K, (p)], 

where Ul(p) = Ux[K~(p)],weobtain the desired form: 

oo 

0 

In the proof of (4) we assumed the existence of the transform Ul(p) and that the orders 
of integration could be interchanged [this amounts to the assumption that the inside integral 
determining ul(~) is uniformly convergent with respect to ~ for ~ ~0]. We note that 
property (4) is noncommutative; for K(p) = KI[KI(p)] Eq. (la) takes the form 

(5) 
k (t, ~) = ,I k2 (~, ~) k, (t, ~) ~ .  

0 

R e l a t i o n s  (4) and (5) can  be g e n e r a l i z e d  e a s i l y  to  t h e  s u p e r p o s i t i o n  o f  s e v e r a l  f u n c t i o n s .  
I f  K(p) can  be r e p r e s e n t e d  in  t h e  fo rm 

K ( p ) = ~ ]  = K ~  [K,-d. . .  IK2 [K~ (p)]...l, n =2 ,  3 . . . . .  (6) 

then the corresponding function is k(t, T) = k[ n] (t, T), for which it is not difficult to 
obtain the recurrence formula 

k[n](t, x) = L - l e x p  [--K[n](p)T]=i kn (~, ~) k In-l] (t, ~ d~. (6a) 

If K(p) is represented in the form 

K(p) = ~[~1 (p) = KI [K2[...[K,_x[K~(p)]...], n = 2, 3 ..... 

then the following recurrence relation applies to k(t, T) = k[n](t, T): 

0 

3. I n v e r s e  F u n c t i o n s  in  t h e  T r a n s f o r m .  I f  K(p) i s  r e p l a c e s  by K * ( p ) ,  which  i s  t h e  
inverse function to K(p), so that K*[K(p)] = p, then the inverse transform u1(t) can be 
expressed in terms of u(t) by 

ul (t) = i u (~) k* (t, ~)d~; 
0 

k* (t, x) = L -i  exp [ - -  K* (p)T]. 

(7) 

(7a) 

Here K*(p), 
procal integral transforms whose kernels are given by (la) and (8a). 
show that 

(8) 

(8a) 

like K(p) itself, must be transformable. Thus (I) and (8) are a pair of reci- 
It is not difficult to 

8 ( t - -  ~) = i k (t, , )  k* (% ~) d~. 
0 
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If the tramsform function is the superposition of several functions so that K(p) = 
K[n](p), then the inverse function K*[n](p) can be expressed in terms of the separate inverse 
functions Km*(p) as follows: 

K*["J(p)  = K~ [K~ [ . . . [K~- ,  [K~ (P)] ... 1. 

A recurrence formula for K*[n](t, T) can be found using (7) and (7a): 

'~*E'~(t' ~) = i  ~* (t, ~) k *r"-u (~, T) d~. 
0 

4. Generalized Multiplication Property of Transforms. If we are given two transforms 
Uz(p) and U2(p) and two functions Kz(p) and K2(p) which are transformable, then [I] 

'~ i 
0 O 0 

(9) 

where ki(t, T) are given by (2a). Relation (9) can easily be generalized to the case of 
several transforms. If we put K=(p) = i, then it reduces to the Efros transform in a some- 
what different form: 

�9 - [ (1o) u (t) : L-,  {U~ [K~ (p)] U~ (~)} = [ 
J 

0 

We now consider the properties of the inverse transforms, which will turn out to be 
reciprocals to the results obtained for the transforms. 

Change of Variables in the Inverse Transform 

Upon a replacement in the inverse transform (i.e., original function), ux(t) of variablet 
by an arbitrary function k(t) so that u(t) = uz[k(t)] the following relation holds between 
the transforms U(p) and U1(p): 

1 c+ioo 

U(p) = 2~---F .t" U~(z)I< (p, z)dz =C~ [U~(z) K(p, z)l; (11) 

K(p,  z) = L exp [k (t) z] = i exp [-- pt 3- k (t) z] dt. ( l l a )  
0 

Here and below C z denotes the convolution of the functions Uz(z) and K(p, z) with respect to 
the complex variable z in the right half-plane. In (ii) and (lla), u(t) and u1(t) are the 
inverse transforms, k(t) does not increase faster than linearly in the limit t + ~ (i.e., 
k(t) ~Mt), and it is assumed that the integral on the right-hand side of (ii) is absolutely 
convergent in the half-plane Re(z) > ~i. In order to prove (ii) one,,~must replace K(p, z) 
on the right-hand side by the Laplace integral and change the order of integration. As for 
the transforms, some useful properties can be shown to be consequences of (Ii) and the usual 
properties of the Laplace transform. 

i. Replacement of the Variable by a Sum of Functions. If k(t) = k1(t) + k2(t) and 
both functions increase no faster than linearly at infinity, then 

U (p) = Lu~ [k~ (t) + k~ (/)1 = C= [Ua (z) K (p, z)]; 

K (p, z) = C~ [K1 (s, z) K2 (p -- s, z)], Ki (p, z) = L exp [ki (t) z]. 

(12) 

(12a) 

This relation can be obtained at once from the well-known multiplicative properties of the 
inverse transforms. In the special case of the sum of a linear and nonlinear function 
k(t) = dxt + do + k=(t) 

U (p) == C~ [U~ (z) K~ ( p -  d~z, z) exp (doz)]. (13) 

2. Replacement of the Variable by a Compound Function. Let k(t) = kz[k2(t)] be the 
compound function and k1(t) increase no faster than linearly at infinity. Then (lla) takes 
the form 
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K (p, z) = C. IK~(s, z)Ks(p, s)l. (14) 

where K~(p, z) is given by (12a). Applying (Ii) from right to left to the chain identity 

u (t) = ul  [kl [k. (t)]] = us [ks (t)], 

where  u z ( t )  = u~ [kl  ( t ) ] ,  and c h a n g i n g  t h e  o r d e r  of  t h e  i n t e g r a t i o n  we have  

U (p) : A [Us (z) Ks (p, z)] = C, {Ks (p, z) Co [U1 (0) K1 (z, 0)l} - Co {U, (0) C~ IK~ (z, 0) Ks (p, z)]}. 

3. Inverse Function in the Original. In (Ii) we take for k(t) the function k*(t) in- 
verse to k(t) such that k*[k(t)] = t is satisfied. Then the transform U~(p) can be found in 
terms of U(p) by the relation 

Ol (p) - Cz IO (z)K* (p, z)], K* (p, z) = t exp [k* (t) z]. (15) 

The function k*(t), like k(t), must satisfy the linearity condition at infinity. Equations 
(ii) and (15) define a pair of reciprocal integral transforms. 

4. Generalized Multiplicative Property of Inverse Transforms. Let ul(t) and u2(t) be 
two inverse transforms and let ki(t) be a pair of arbitrary functions satisfying the linearity 
condition at infinity. Using the usual multiplicative properties of inverse transforms along 
with (ii), it is not difficult to see that 

L {ul [kl (t)l us [k, (t)l} = Cs [01 (s)Us (p -- s)]; (16) 

U,(p) : :  C ~ [ U i ( z ) g i ( p ,  z)I, i = 1, 2. (16a)  

This result is proven using the same assumptions as in (ii). In the special case where k2(t) = 
t, it reduces to the reciprocal of the Efros transformation: 

where Ui(p) 
[21 

L {ul lkl (t)l u2 (t)} =: C.[Ua (s) U2 (p - -  s)], (i7) 

is given by (16a). Equation (17) can be written in the more conventional form 

L {u, lk, (t)l u2 (t)} .... Cz IUI (z) Ko (p, z)]; 

Ko (p, z) .... L {u2 (t) exp Ikl (t) z]}. 

Examples of the use of this result in obtaining Laplace transforms and inverses are given in 

[2]. 

Some Applications 

We now show how the properties discussed above can be applied to find inverse Laplace 
transforms. From tables of Laplace transforms [3, 4] we determine L-lexp(--Thlnp), L-lexp 

(--The/p), L-~exp(--Th/p). Using these results and (3) we can compute inverses to the following 

transforms: 

u (t) = L - i  U~ (dip Jr- do + h In p) = 
'/e' (t - -  d l @  h-  1 [ ~,~(~) 

,, r (-~h) 0 
exp (--  do T) dT; dl, do, h ~ 0; (18) 

u (t) --- L -I  Ui (dip + do + h]/'-fi) --  
1 

2 o 

dl, do, h ~ - 0 ;  

-~ at ( ' c )  e x p [  (h'~)2 ]d'~; 
(t - -  d: T) 3jz 4 ([ - - d l T  ) 

(19) 

1106 



u ( t ) = L _ i U l ( d l p + d o _ F  Ph' ) =  ldl U1 (-~-1)exp ( d~ 

!iT)/ sgn(h) t " x [hi x L t [ 2 V l h l x ( t  x) ]exp d~, 
�9 /A  1 . - -  _ _  

d 1 (t --  "r dl ] 

(20) 

where 

1, 

sgn(h)= O, 

v h > O  / J~(2 ItV'~), V h ~ O ,  
vh=O;L~(2]/[h--~-)= I , ( 2 ~ ) ,  vh*<O. 
1, v h % 0  

(20a) 

We use (3) to obtain the inverse of the transform Uz [K(p)] where KI (p) is a rational 
function which can be expanded into partial fractions of the form 

Iz 

K (p) dip+do ' "~ h,. = ~ , ~  - -  , Pm+l > Pm> O. (21) 
m=1 ,o+p,~ 

Let rx[ n](t, T) be the inverse transform 

( ) r[ "'](t, ~c)=L -1 exp h,~x ' = 6 ( t ) - -  exp ( - -p~t)  sgn(h,~)L~(2l/lh~I'~t ) ,  
P + Pm (21a) 

where sgn(h m) and L1(2~h-s have the same meaning as in (20a). Using the convolution 
theorem we can write a recurrence relation 

r,, (t, "~) = L-* exp ( - -  
12 

, _  = r~ "~ ( L  "0 r ~ _ l  (t  - ~, ~)  , ~  = r , , _ ,  ( t ,  "0 - -  
. . . .  1P + P~ / o 

(21b) 

! 

where rz(t,T) =r1[1](t, T). Finally 

k (t, ~) = H (l - -  dlx) exp (-- do'r) r,, (t - -  dl~, z), (21c) 

and the inverse transform takes the form 

u ( t ) = L - ~ U ~ ( d l p + d o +  2 hm )__-- 
m=1P+Pm 

t/d~ 
ul (x) exp (-- do~) r~ (t - -  dlx, x) d~. 

0 

Equation (21) describes the class of rational functions with finite n and can be extended to 
the class of meromorphic functions where n + ~. With the help of (21) and (21a) we can obtain 
either exact inverses or approximate expressions with an estimate of the error. 

Various combinations of (2), (3), and (4) through (7) can be used very effectively in 
finding inverse transforms. We show this with an example. It follows from (i) and (la) that 
multiplication of K(p) by a constant b > 0 changes the scale of variable T in the function 
k(t, T): 

u (t) = L -~ U~ [b K (P)] = ~ u~ (~) k (t, bT)dz. (2 2) 
0 

This relation is a generalization of the similarity property to which it reduces when K(p) = 
p. Using (22), a large class of rational functions K(p) can be expanded into finite continued 
fractions [5] of the form 

h 1 h~ h~-i 
K ( p ) =  p + pl + - - ,  

P+P~ + P+P3 + : . . ~  P ~ P ~  (23) 
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If we let Km(p) be the function 

Kin(p) =p+pm + 
hm (p) + (p), 

P 
(24) 

where Km ~ = p + Pm and Kmi(p) = hm/p are its linear and nonlinear parts, 
written as a superposition of functions: 

K(p)=R~ + a l  2 +K~[ . . -  o [K~-~ + K~-~ [K~ (P)I]-..I. 

then K(p) can be 

(24a) 

S i n c e  k[Z 1 (t, ~) =-- L - i  exp [--~K[~ m] (p) l 

relation for use in calculating the function k(t, T) = kn[1](t, T): 

k[~"l( t, "0 = L - t  exp I--K[~ ~ (p) zl - exp (--  p.~)6 (t - -  ~); 

k[~ n-~l (t, ~) = L-~ exp {-- z [K~ + /(1_1 [/~[n] (p)ll} = 

= exp (--= p._~ �9 - -  p . t )  [6 (t - -  ~) _ H (t - -  ~) sgn (h~_t) ~ J h-t~ I~ L1 (2 VI  h~_t I "rt)l; 

k[~ ml (t, "0 = L-~ exp {--'~ [K~ + K~ [K[~ +~  (p)ll} = 

= H (t - -  "~) exp (--  pm I:) [k[~'~+ll(t - -  1:, 0) - -  sgn (hm) L i (2 r  I �9 ~ ) k~ '~+" (t - -  w, ~) d~], 

m = n - - 1  . . . . .  2, 1. 

For example when n = 3 we obtain from (25) 

hi h~ hi (p + p~) 
K (p)= p-I-p~ + - -  - -  = p + p~ -t- 

and using r1[m](t, z ) and (3), (4) we obtain a recurrence 

(25) 

(26) 

and 

k (t, "0 = k[a 11 (t, "c) ---- exp (--  piT) [exp (--(P2 + P3) t)6 (t - -  x)--  

-- H (t -- ~] exp (-- p~T -- p3t) sgn (h 0 l / [  h~ IX L~ (21/-1 hi I T (t -- x) ) +  
g t 

V/- l--'g + H ( t - - T ) s g n ( h l h .  ) ihlh~l------~ e x p ( - - p 3 ( t - - ~ ) )  Sexp( - -p=~)L~ (2/Ih~lg(t--~))L~(2F-I~l~Ddgl. 
t - - ~  o 

Equations (23)-(26) can be used to obtain exact and approximate expressions for inverse 
transforms. With the help of the results given here, inverse transforms can effectively be 
obtained for various other classes of transforms, including more general forms. For example, 
repeated application of (4) to (21) and (23)-(26) with the use of (19) gives an expression 
for k(t, T) corresponding to the class of transforms K ( p ) = c l p + c ~ + ~ K I ( P )  , where Ki(p) can be 
a rational function expanded in partial fractions [Eq. (21)] or a finite com~inued fraction 

[Eq. (23]. 

Transforms like (21) and (23) occur in heat-conduction problems for materials with a 
continuous thermal memory of the Fourier type [i, 6] and describe many of these materials, 
enough for practical application. In a Maxwell type material [i, 6-8] the corresponding 
transform has the form Ko(p) = /~p), where a rather wide class of functions K(p) can be 
described with rational functions of the form ~ K ( p ) = d 2 p 2 +  d l p + d o + R ~ ( P ) / R n + l ( P )  , where Rn(p) 
is a polynomial of degree n in p. Letting Ko(p) be a finite continued fraction (23), we can 
approximate ~(p) to order p-m. Examining (25), we note that k(t, T) corresponding to (23) 
can be written in the form k(t,T)=H(t--~)ko(t--% t, T) , where the difference of arguments t -- T 
appears as a single unit. This argument is independent of time and corresponds to heat pro- 
pagation with a finite velocity. Thus we deduce the important result that the heat propaga- 
tion velocity inan arbitrary Maxwell medium does not change with time. 
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With the help of a change of variable in the Laplace transform a connection can be es- 
tablished between solutions of equations differing from each other by time operators. For 
example in [i, 6] a connection was established using (1) between the solutions of similar 
heat-conduction problems in materials with and without memory. A correspondence principle 
between the transforms of such similar problems was obtained. In [7, 8], using (i0), the 
solutions of heat-conduction boundary-value problems were obtained in materials with memory. 
Obviously the above results can also be used in the solution of other problems in heat transfer, 
mass transfer, momentum transfer in compound materials such as composites and materials with 
memory, and also in the solution of various types of coupled heat and mass transfer p~oblems. 

NOTATION 

L, L -I, direct and inverse Laplace transform operators; p, Laplace transform variable; 
U(t), U(p), original function and its transform; H(t), Heaviside unit step function; 6(t), 
Dirac delta function; F(x), Gamma function; J1, I~, Bessel functions of the first kind and 
first order for real and imaginary arguments, respectively. 

i. 

2, 

3. 

4. 

5. 

1 

7. 

8, 
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